来者不拒网

yolov5的head修改为decouple head

yolov5的head修改为decouple head

yolov5的修改head修改为decouple head

yolox的decoupled head结构

在这里插入图片描述
本来想将yolov5的head修改为decoupled head,与yolox的修改decouple head对齐,但是修改没注意,该成了如下结构:

在这里插入图片描述

感谢少年肩上杨柳依依的修改指出,如还有问题欢迎指出
在这里插入图片描述

1.修改models下的修改yolo.py文件中的Detect

class Detect(nn.Module):    stride = None  # strides computed during build    onnx_dynamic = False  # ONNX export parameter    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer        super().__init__()        self.nc = nc  # number of classes        self.no = nc + 5  # number of outputs per anchor        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.grid = [torch.zeros(1)] * self.nl  # init grid        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)        # self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv        self.m_box = nn.ModuleList(nn.Conv2d(256, 4 * self.na, 1) for x in ch)  # output conv        self.m_conf = nn.ModuleList(nn.Conv2d(256, 1 * self.na, 1) for x in ch)  # output conv        self.m_labels = nn.ModuleList(nn.Conv2d(256, self.nc * self.na, 1) for x in ch)  # output conv        self.base_conv = nn.ModuleList(BaseConv(in_channels = x, out_channels = 256, ksize = 1, stride = 1) for x in ch)        self.cls_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch)        self.reg_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch)                # self.m = nn.ModuleList(nn.Conv2d(x, 4 * self.na, 1) for x in ch, nn.Conv2d(x, 1 * self.na, 1) for x in ch,nn.Conv2d(x, self.nc * self.na, 1) for x in ch)        self.inplace = inplace  # use in-place ops (e.g. slice assignment)self.ch = ch    def forward(self, x):        z = []  # inference output        for i in range(self.nl):            # # x[i] = self.m[i](x[i])  # convs            # print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", i)            # print(x[i].shape)            # print(self.base_conv[i])            # print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")                                                x_feature = self.base_conv[i](x[i])            # x_feature = x[i]                        cls_feature = self.cls_convs[i](x_feature)            reg_feature = self.reg_convs[i](x_feature)            # reg_feature = x_feature                        m_box = self.m_box[i](reg_feature)            m_conf = self.m_conf[i](reg_feature)            m_labels = self.m_labels[i](cls_feature)            x[i] = torch.cat((m_box,m_conf, m_labels),1)            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()            if not self.training:  # inference                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                y = x[i].sigmoid()                if self.inplace:                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                    y = torch.cat((xy, wh, y[..., 4:]), -1)                z.append(y.view(bs, -1, self.no))        return x if self.training else (torch.cat(z, 1), x)

2.在yolo.py中添加

def get_activation(name="silu", inplace=True):    if name == "silu":        module = nn.SiLU(inplace=inplace)    elif name == "relu":        module = nn.ReLU(inplace=inplace)    elif name == "lrelu":        module = nn.LeakyReLU(0.1, inplace=inplace)    else:        raise AttributeError("Unsupported act type: { }".format(name))    return moduleclass BaseConv(nn.Module):    """A Conv2d ->Batchnorm ->silu/leaky relu block"""    def __init__(        self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"    ):        super().__init__()        # same padding        pad = (ksize - 1) // 2        self.conv = nn.Conv2d(            in_channels,            out_channels,            kernel_size=ksize,            stride=stride,            padding=pad,            groups=groups,            bias=bias,        )        self.bn = nn.BatchNorm2d(out_channels)        self.act = get_activation(act, inplace=True)    def forward(self, x):        # print(self.bn(self.conv(x)).shape)        return self.act(self.bn(self.conv(x)))        # return self.bn(self.conv(x))    def fuseforward(self, x):        return self.act(self.conv(x))

decouple head的特点:
由于训练模型时,应该是修改channels = 256的地方改成了channels = x(失误),所以在decoupled head的修改部分参数量比yolox要大一些,以下的修改结果是在channels= x的情况下得出
比yolov5s参数多,计算量大,修改在我自己的修改2.5万的数据量下map提升了3%多
1.模型给出的目标cls较高,需要将conf的修改阈值设置较大(0.5),不然准确率较低

parser.add_argument('--conf-thres',修改 type=float, default=0.5, help='confidence threshold')

2.对于少样本的检测效果较好,召回率的修改提升比准确率多
3.在conf设置为0.25时,召回率比yolov5s高,修改但是修改准确率低;在conf设置为0.5时,召回率与准确率比yolov5s高
4.比yolov5s参数多,计算量大,在2.5万的数据量下map提升了3%多

对于decouple head的改进

在这里插入图片描述
改进:
1.将红色框中的conv去掉,缩小参数量和计算量;
2.channels =256 ,512 ,1024是考虑不增加参数,不进行featuremap的信息压缩

class Detect(nn.Module):    stride = None  # strides computed during build    onnx_dynamic = False  # ONNX export parameter    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer        super().__init__()        self.nc = nc  # number of classes        self.no = nc + 5  # number of outputs per anchor        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.grid = [torch.zeros(1)] * self.nl  # init grid        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv        self.inplace = inplace  # use in-place ops (e.g. slice assignment)    def forward(self, x):        z = []  # inference output        for i in range(self.nl):            x[i] = self.m[i](x[i])  # conv            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()            if not self.training:  # inference                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                y = x[i].sigmoid()                if self.inplace:                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                    y = torch.cat((xy, wh, y[..., 4:]), -1)                z.append(y.view(bs, -1, self.no))        return x if self.training else (torch.cat(z, 1), x)

特点
1.模型给出的目标cls较高,需要将conf的阈值设置较大(0.4),不然准确率较低
2.对于少样本的检测效果较好,准确率的提升比召回率多
3. 准确率的提升比召回率多,
该改进不如上面的模型提升多,但是参数量小,计算量小少9Gflop,占用显存少

decoupled head指标提升的原因:由于yolov5s原本的head不能完全的提取featuremap中的信息,decoupled head能够较为充分的提取featuremap的信息;

疑问

为什么decoupled head目标的cls会比较高,没想明白
为什么去掉base_conv,召回率要比准确率提升少

未经允许不得转载:来者不拒网 » yolov5的head修改为decouple head